WATERFLOODING SIMULATOR

Sahara’s injection pattern simulator helps to obtain a historic
adjustment and a production forecast in considerably shorter
times compared to a numerical simulation.

The system has implemented three analytical models based on the
Segregated Flow, Buckley & Leverett, and Craig, Geffen & Morse
equations, and two empirical models, Statistical Curve and WOR
vs Np method. All these models calculate the fraction of water
produced according to the cumulative injected water.

The results generated by the simulator can be visualized as
production curves for each well, both at well level or layer level,
and also for each pattern or group of wells. Injected pore volumes,
recovery factors and injection-production balance can also be
represented against time. The Map window can display saturation
maps, injected pore volumes and recovery factors, among others
elements.

The time required to prepare the data and perform the
subsequent calculation is only a few minutes. This is why this
tool is powerful not only for the optimization of future injection
results, but also for solving situations typical of a secondary
recovery project such as anticipating channeling issues or
identifying connections among wells that may affect their
production response.
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Injection Patterns in the Map Window. Colored injection patterns are displayed according to oil saturation.

The purpose of Sahara’s analytical simulator is to
represent the displacement of fluids in the reservoir
due to the injection of water, once the gas has been
produced or redissolved through a multilayer pattern.
These injection patterns consist of a group of flow
elements connecting each injector well with its
neighboring producer wells in each layer. Each flow
element represents the reservoir volume where the
fluid sweeping from the injector well to the producer
well takes place.

The injection patterns are built independently for each
layer and can be modified over time to reflect the
actual history of water injection. To do it in the most
accurate way, it is possible to review the workover
historical information, in order to check if each well is
open or closed in each of the layers that are in
secondary recovery. There is a tool that calculates the
well status in each layer and for each date, taking into
account the well workover data, such as perforations,
cementations and installations that may be leaving
closed layers.

By using the simulator, different alternatives of
injection patterns can be tested. In this way, in a short
period, it is possible to have multiple recovery
responses  associated with  different pattern
configurations, to imitate different sweeping schemes,
and to assess which is the one that optimizes the
project.

To be prepared to perform a simulation, the following
information must be available: well conditions, that is,
injection and production layers, injection data
measured per layer, petrophysical data and PVT tables
for the fluids in each of the layers and pore volume
maps for each of them. Assuming that all the previous

data are known, the last element particularly important
for the simulation is the areal injection distribution to
each producer well in each layer and each date. The
work methodology consists of initially assigning areal
distribution coefficients and then modifying them in
order to achieve an adeqguate history matching. To
perform the coefficient initialization, Sahara offers
different alternatives, with options related to the pore
volumes and/or the geometry of the flow elements,
and to the production of the wells connected to each
injector well. In addition, a Capacitance-Resistance
Model (CRM) has been implemented to calculate these
coefficients. This model calculates connectivity
coefficients over time, which can be interpreted as the
areal distribution coefficients, since they represent the
fraction of water injected in each injector in each layer
contributing to the production of each associated
producer well. As an additional parameter, it calculates
a response time associated with each injector well.

The time required to prepare the data and perform
the subsequent calculation is only a few minutes. This
is why this tool is powerful not only for the
optimization of future injection results, but also for
solving situations typical of a secondary recovery
project, such as identifying connections among wells
and anticipating channeling issues, among others.

Many of the Sahara tools can help to pre-process the
information in order to carry out a simulation.
Wellworks, Cross Sections, Logs and 3D windows help
to visualize the well status to define their connections.
The Pattern Analysis window allows preliminary
studies of recovery factors with the purpose of
validating sweeping areas, pore volume maps and
injected water per layer, among other possibilities.



With Sahara’s secondary recovery simulator,
the user can get a history matched
production forecast for each well, at layer
level, in a short time.

Once all the data necessary to perform the simulation
have been collected, it is necessary to define the
calculation preferences, and most important the
calculation model to be used. There are three
analytical models based on the Segregated Flow,
Buckley & Leverett, and Craig, Geffen & Morse
equations, and two empirical models, Statistical Curve
and WOR vs Np method. In addition, a fill up curve can
be used to represent the production response at the
beginning of the secondary recovery, simulating the
injected water that compresses and redissolves the

released gas that may exist in the reservoir. Also, it is
possible to model a delay in response associated with
the time it takes the injected water to have an effect in
the producer wells. Another calculation option sets an
economic limit to be applied to the flow rates
calculated by the simulator. As an additional
alternative, for wells or layers that are not in secondary
recovery, a decline forecast can be performed in order
to be used as a result of the simulation. This last option
allows having a forecast for the whole project, even in
cases where there are areas with no secondary
recovery.

After setting the calculation preferences, the simulator
simply takes a few seconds to calculate. It is also
possible to make it even faster, by selecting the layers
by groups to obtain the history matching.
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Coefficients Calculated Using the CRM Method. Injection patterns are
displayed for a given layer and date, and above the vectors that
account for the value of the injection areal distribution coefficients.

3D visualization of injection patterns.
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History matching curves. The production forecast curves calculated with the simulator for both oil and liquid are displayed, compared to the actual

production curves.
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Monte Carlo Simulation window. The image displays the outcome of a
2500-run Monte Carlo simulation using the Segregated Flow equation where
a sensitivity analysis was performed with many parameters.
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Statistical analysis window. The image displays the result distribution of a
2500-run Monte Carlo simulation using the Segregated Flow equation where
a sensitivity analysis was performed with many parameters.

After obtaining an adeqguate history matching, a
Monte Carlo simulation can be run in order to do a
sensitivity analysis. The variables available will depend
on which model was chosen to perform the
calculation. A theoretical distribution and a maximum
and minimum value can be assigned to each of them,
which will be interpreted in different ways depending
on the distribution chosen. In addition, a matrix of
correlations can be used to define if there is any
correlation linking the variables involved in the
calculation, and a tornado chart to assess which of the
variables has the most impact on the result. Finally,
the number of runs to be performed must be selected.
An additional option is to use the Latin Hypercube
methodology to take the sampling values. This
methodology reduces the number of runs necessary
to obtain an acceptable result. After the simulation
has been performed, production logs for the 10, 50
and 90 percentiles can be visualized as a table or a
chart.
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